
DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-1 EADSIM

DRAFT

2.0 CONCEPTUAL MODEL SPECIFICATION

2.0.1 OPERATIONAL CONCEPT

EADSIM is an analytic model of air and missile warfare used for scenarios ranging from
few-on-few to many-on-many. It is unique in that each platform (such as a fighter aircraft)
is individually modeled, as is the interaction among the platforms. It models the command
and control (C2) decision processes and the communications among the platforms on a
message-by-message basis. Intelligence gathering is explicitly modeled and the
intelligence information used in both offensive and defensive operations.

2.0.2 TOP-LEVEL SOFTWARE DESIGN

EADSIM consists of four processes which run in parallel and exchange data and commands
required for their coordination. The processes:

• Command, Control, Communications and Intelligence (C3I)
• Flight Processing
• Detection
• Propagation

contain all or portions of the various functionalities designated in the SMART Functional
Area Template (FAT), e.g., the Sensor element of the FAT has control logic to direct
sensors and determine their status in the C3I process while Signal to Noise Ratio
computations are performed and detections are determined in the Detection process. The
C3I process performs Command and Control (C2) decision modeling, message processing,
track processing, and engagement and weapon modeling for all platforms in a scenario.
The state of a platform’s C2 logic determines what computations are performed and what
actions are modeled in the other three processes. The Flight Processing process maintains
and updates the movement and status of each platform in response to commands and
information received from C3I. The Detection process models each sensor in the scenario
and determines, based on information provided by C3I, whether a sensor is active and when
it can detect a given target. The Propagation process (Prop) models communications
connectivity which determines whether messages can be successfully transferred between
two nodes in a network.

EADSIM can be run in various configurations consisting of combinations of the four
processes. Figure 2.0-1 shows the possible combinations that can be used. Notice that
Flight Processing is always required and that it is the only process that can be run by itself.
The most commonly used configuration is the one assuming perfect connectivity.

FIGURE 2.0-1. EADSIM Runtime Configurations.

Processes Run
Uses

FP DET PROP C3I

• • • • • Full Combat Analysis

• • • • Perfect Connectivity

• • Flight Paths Only

• • • Non-reactive Case Detections

• • • Non-reactive Case Connectivity

• • • Tactical Missile Launches, Bomber Engagements

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-2 Update: 12/31/97

DRAFT

Process Logic Flow

EADSIM is both an event driven and a time stepped simulation. The C3I process is event
driven, i.e., uses an event calendar, while the other three processes are time stepped. The
time step, called the simulation interval, can be specified by the user as an integer number
of seconds or has a default value of 3 seconds. Each of the time stepped processes is
controlled by a main program which, after a series of initialization steps enters into a
processing loop that updates its scenario time, reads incoming messages from the other
processes, performs its local processing and constructs and sends outgoing messages to the
other processes. The processing loop terminates when its simulation time exceeds the end
of the scenario.

Figure 2.0-2 diagrams how messages are exchanged among the processes to maintain the
proper sequence of execution between them. The key to understanding the diagram is the
fact that the communications sockets are blocking sockets, i.e., a process trying to read a
socket must wait there until all the data in the message it is reading has arrived. This is the
mechanism by which the required sequencing between processes is maintained. The top
line of processing in the figure, labeled FP, represents the main processing loop for Flight
Processing. The second line, represents the processing performed by C3I process, and the
remaining two lines represent the main processing loops for the Detection and the
Propagation processes, respectively.

FIGURE 2.0-2. Execution Sequencing between Processes.

C3I sends the engagement commands, generated from the previous simulation interval, to
the FP process which updates the state vectors of the platforms in the scenario, and uses the
C3I commands to update the status of the platforms. The updated states and status
information are then sent to the other three processes.

When C3I receives the updated platform data from FP, it sends sensor control information
to Detection and jammer control information to both Detection and Propagation. Detection

AND

ANDANDSENDS
COMMANDS

UPDATE

STATES

SEND

TRUTH

SEND

CONTROl

DATA

COMPUTE

CONNEC-

TIVITY

MOVE ALL

TO NEXT

C3I EVENTS
THROUGH NEXT

EVALUATE
DETEC-
TIONS

SEND

CONNEC-

TIVITY

SEND

SPDS
AND

FP

C3I

DETECT

PROP

SUBSEQUENT TIME STEP

AND

AND

AND

AND

AND

AND

AND

AND

AND

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-3 EADSIM

DRAFT

uses the platform states and status data in generating detections for the current simulation
interval. The detections are placed in an array named the Sensor Periodic Detection
Summary (SPDS). When all the detections for the current interval have been generated,
the SPDS is sent to C3I. Propagation uses the C3I commands and the platform states and
status from FP to determine network connectivities. The connectivities are sent to C3I,
which uses the detections to perform track processing. The connectivity information
determines whether a message can be received at its destination. Each of the time stepped
processes advance their simulation clocks to the next simulation interval at the bottom of
their processing loop and wait at the socket read for incoming messages. C3I advances its
clock each time an event is taken from the calendar. After the interprocess communications
(I/C) event is pulled from the calendar and the I/C function, C3I Data Transfer, is called
C3I synchronizes with the other processes for the next simulation interval.

C3I Process Logic

Four major functions or functional classes comprise the description of the C3I process
logic:

• the Simulation Executive
• C3I Initialization
• the generic processing performed in each ruleset
• the C3I Interprocess data transfer function.

The description follows Figures 2.0-3 through 2.0-7. Each figure is a logic flow diagram
with numbered blocks that serve as keys in the discussion of the diagram.

The Simulation Executive

Figure 2.0-3 is a flow diagram of that part of the simulation executive which places the C3I
functions into execution. The simulation executive consists of a set of scheduling utilities
that schedule events on the event calendar and an Execute utility that retrieves each event
from the calendar. Events can be scripted during scenario generation to occur at specified
times or they can be scheduled in the course of processing other events. Each event
contains a pointer to a function. The function performs the processing required to model
the event. The Execute utility invokes the function when it retrieves the event. This can be
thought of as a “ruleset engine” that allows the state of a ruleset to change in response to
developing conditions as the scenario unfolds.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-4 Update: 12/31/97

DRAFT

FIGURE 2.0-3. EADSIM Simulation Executive.

Block 1. The executive calls the initialization function, C3I Init, to read the scenario file
and construct the runtime database of platforms, rulesets, sensors and jammers. When
these initialization steps are complete, the first rulesets to be executed have been scheduled
on the simulation calendar along with periodically executing utilities, such as C3I Data
Transfer. The initialization function returns to the simulation executive.

Block 2. The simulation executive enters into a processing loop which continues to execute
for the duration of the scenario.

Blocks 3. and 4. The simulation executive retrieves the next event to be executed from the
calendar and extracts the pointer to the function that should be executed. The call to
C3IDataTransfer is the first event placed on the simulation calendar in the simulation
interval. This first call sets up the sockets with the other processes and provides the initial
messages required to start C3I. The details of the data transfer function are discussed
below. Subsequent call to this function are always scheduled to occur at the beginning of
the next simulation interval. The remaining events on the calendar for this simulation
interval are calls to ruleset phases that have been scheduled during the execution of
previous events.

Simulation Executive

Call C3i Initialization

Get Next Event
from the Calendar

Call Function specified
in the Event Record

Exit

1.

LOOP Until
ScenarioEnd

2.

3.

4.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-5 EADSIM

DRAFT

C3I Initialization Logic

The C3I initialization function, C3iInit, initializes the scenario data base and schedules
events for the first scenario interval, as well as scripted TBM launches for their specific
times. The steps performed by the initialization routine are shown in Figure 2.0-4.

FIGURE 2.0-4. C3I Process Initialization.

Block 1. The scenario file to be executed is read from disk in preparation for initializing the
C3I platform data structures.

Block 2. The sockets between C3I and the other processes are initialized to establish
communications with the other processes.

Block 3. The C3I data structures for all of the simulation objects, e.g., the scenario,
platforms, sensors, weapon Pk tables and jammers, are initialized from the scenario data
base.

Block 4. The rulesets phases are assigned to platforms as determined from the scenario data
base.

C3I Initialization

Read the scenario
file data

Initialize the inter-
process communications

Initialize the scenario,
sensors, platforms and

jammers

Initialize the rulesets

Initialize the first
detection commands

 for sensors

Schedule the first
ruleset phases

Schedule the interprocess
communications for C3I

Schedule intersimulatoin
protocols

Exit

1.

2.

3.

4.

5.

6.

7.

8.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-6 Update: 12/31/97

DRAFT

Block 5. The initial commands for controlling platform sensors are constructed from the
scenario data base and placed in the interprocess communications queue for Detection.

Block 6. The first ruleset phases to be executed for the platforms are placed on the calendar
in time order.

Block 7. The C3I data transfer function is placed on the calendar as the first event. This
order of events assures that the data transfers between C3I and the other processes occur in
the sequence necessary to maintain the proper timing relationships between the processes.

Block 8. If EADSIM is communicating with other simulations via DIS or ALSP, the update
function(s) for the specified protocol is scheduled on the calendar for execution.

C3I Interprocess Communications Logic

Figure 2.0-5 is a logic flow diagram of C3I Data Transfer which consists of a sequence of
tests to determine if any external simulations are communicating with EADSIM and which
of the other three processes are running in the current EADSIM configuration. Each read
at a socket interface will block the C3I process until the expected data arrives and has been
retrieved.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-7 EADSIM

DRAFT

Block 1. If TAC Brawler is running in confederation with EADSIM, the call to
ReadTBGuestMessage passes incoming messages to C3I.

Block 2. If EADSIM is running with an ALSP confederation, a Request Time Advance
message is sent out to coordinate EADSIM’s time advance with the other simulations.
EADSIM is forced to wait here until the other simulations in the confederation have
advanced their time to or past EADSIM’s requested time.

C
3I

D
at

aT
ra

n
sf

er

IF
 r

u
n

n
in

g
 w

it
h

T

A
C

 B
ra

w
le

r

R
ea

d
T

B
G

u
es

tM
es

sa
g

es

G
et

 m
es

sa
g

es
 f

ro
m

T
A

C
 B

ra
w

le
r

IF
 r

u
n

n
in

g
 w

it
h

A
L

S
P

R
eq

u
es

t
ti

m
e

ad
va

n
ce

fr

o
m

 t
h

e
co

n
fe

d
er

at
io

n

IF
 r

u
n

n
in

g
 w

it
h

D

IS

R
ea

d
 P

D
U

s
fr

o
m

th
e

D
IS

 b
ro

ad
ca

st
so

ck
et

W
ri

te
F

P
G

u
es

tR
ep

o
rt

S
en

d
 g

u
es

t
p

la
tf

o
rm

u
p

d
at

es
 t

o
 F

P

IF
 F

P
 is

 r
u

n
n

in
g

W
ri

te
F

P
R

ep
o

rt
s

S
en

d
 e

n
g

ag
em

en
t

co
m

m
an

d
s

to
 F

P

R
ea

d
T

ru
th

G
et

 n
ew

 d
at

a
fr

o
m

F

P

IF
 r

u
n

n
in

g
 w

it
h

T
A

C
 B

ra
w

le
r

W
ri

te
G

u
es

tR
ep

o
rt

s

S
en

d
 m

es
sa

g
es

 t
o

T
A

C
 B

ra
w

le
r

IF
 D

et
ec

ti
o

n
 is

ru
n

n
in

g

W
ri

te
S

en
so

rR
ep

o
rt

S
en

d
 s

en
so

r
co

n
tr

o
l

d
at

a
to

 D
et

ec
ti

o
n

IF
 P

ro
p

 is
ru

n
n

in
g

W
ri

te
P

ro
p

R
ep

o
rt

s

S
en

d
 ja

m
m

er
co

m
m

an
d

s
to

 P
ro

p

F
lu

sh
 o

u
tp

u
t

b
u

ff
er

s
fo

r
st

at
is

ti
ca

l l
o

g

fi
le

s

S
ch

ed
u

le
 s

el
f

fo
r

th
e

n
ex

t
si

m
u

la
ti

o
n

 in
te

rv
al

E
xi

t

1. 2.

1. 2. 3. 4.

5. 6. 7.

8.

9.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-8 Update: 12/31/97

DRAFT

Block 3. If EADSIM is running with a DIS confederation (other than TAC Brawler),
incoming messages are read from the DIS broadcast socket and the call to
WriteFPGuestReports sends guest platform update messages to Flight Processing (guest
platforms are platforms that are represented in EADSIM but are updated by another
simulation).

Block 4. If Flight Processing is running (it’s always required), commands from C3I to FP,
generated in the previous simulation interval, are sent by the call to WriteFPReports. The
following call to ReadTruth reads platform states, updated to the current simulation
interval, and status information from FP and places it in the appropriate C3I platform data
structure specified in each message.

Block 5. If EADSIM is running in confederation with TAC Brawler, messages generated
in the current simulation interval are transmitted to TAC Brawler by the call to
WriteGuestReports.

Block 6. If the Detection process is part of the current configuration, WriteSensorReports
is called to send it sensor commands for the current interval. ReadSPDS reads the
detections for the interval. ReadSPDS uses a C language function pointer in the platform
data structure to call a ‘plug in’ function that reads the detection summary for the current
simulation interval and performs the ruleset’s track processing. This function is assigned to
the ruleset during initialization. It uses the detection information to update the platform
track files specified by each message and can purge a track to accommodate one of higher
quality when the track file has no room for more tracks.

Block 7. If Propagation is running, the (receiver) jammer commands C3I has generated are
sent for processing by calling WritePropReports. The call to GetCommunications reads
network connectivity results computed by Propagation and places them in the designated
network data structures.

Block 8. After data is received from the Propagation process, the output buffers for logging
statistics are flushed.

Block 9. C3IDataTransfer reschedules itself to execute at the start of the next interval.

The executive now proceeds to call all events that have been scheduled for the interval.
This process of scheduling C3IDataTransfer and subsequent calls to scheduled rulesets
continues until the scenario ends.

Ruleset Execution

Figure 2.0-6 is a conceptual representation of the processing performed in a ruleset. The
sequence of processing shown in the figure does not correspond closely to the actual
processing in a ruleset; for example, a phase may be scheduled anywhere in a given ruleset.
Typically, it is one of the last operations in a processing path. The figure also shows how
information from the other processes is stored and accessed by the components of C3I. In
addition to the data transfer function which comprises one component, rulesets can be
divided into three more components: Track Processing, Message Processing and BM/C3
processing. The Message Processing component consists of a transmit function, which is
referenced implicitly in Block 2, and the receive message processing function that
processes messages sent out over a communications network.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-9 EADSIM

DRAFT

Block 1. Track Processing is performed at the time detection reports are retrieved from the
Detection socket. For each track file active tracks are updated. Low priority tracks are
deleted from saturated track files to make room for new, higher priority tracks. When a
platform’s track file is empty and it receives a new track, phase 1 (e.g., Target Select) of its
ruleset is scheduled for execution after a track establishment delay.

S
en

d
 C

o
m

m
an

d
s

to

F
P

 P
ro

ce
ss

/

R
ea

d
 U

p
d

at
ed

T
ru

th
 D

at
a

fr
o

m
 F

P

S
en

d
 C

o
m

m
an

d
s

to
 D

et
ec

ti
o

n
/

R
ea

d
 S

P
D

S
 R

ep
o

rt
s

fr
o

m
 D

et
ec

ti
o

n

C
u

rr
en

t
R

u
le

se
t

P
h

as
e

G
en

er
at

e
 C

o
m

m
an

d
s

an
d

C
o

m
m

u
n

ic
at

io
n

s
M

es
sa

g
es

 f
o

r
o

th
er

P
la

tf
o

rm
s

&
 T

ra
n

sm
it

G
en

er
at

e
M

es
sa

g
es

 f
o

r
o

th
er

 P
ro

ce
ss

es
 &

P

la
ce

 in
 Q

u
eu

e

S
ch

ed
u

le
 N

ex
t

R
u

le
se

t
P

h
as

e

E
xi

t

F
lig

h
t

P
ro

ce
ss

in
g

M
es

sa
g

e
Q

u
eu

e

S
en

so
r

M
es

sa
g

e
Q

u
eu

e

P
ro

p
ag

at
io

n
M

es
sa

g
e

Q
u

eu
e

C
3I

D
at

aT
ra

n
sf

er

R
ea

d
 In

co
m

in
g

 P
ro

to
co

l
M

es
sa

g
es

W
ri

te
 O

u
tg

o
in

g
 P

ro
to

co
l

m
es

sa
g

es

S
en

d
 J

am
m

er
 C

o
m

m
an

d
s

to
 P

ro
p

 P
ro

ce
ss

/

R
es

ch
ed

u
le

C

3I
D

at
aT

ra
n

sf
er

E
xi

t

D
et

ec
ti

o
n

R
ep

o
rt

s

N
et

w
o

rk
C

o
n

n
ec

ti
vi

ti
y

T
ru

e
S

ta
te

V
ec

to
rs

P
la

tf
o

rm
 T

ra
ck

F
ile

s

P
la

tf
o

rm
 S

ta
te

 a
n

d
S

ta
tu

s
In

fo

P
la

tf
o

rm
 P

ri
o

ri
ty

M
es

sa
g

e
Q

u
eu

e

D
IS

/A
LS

P
M

es
sa

ge
s

D
IS

/A
LS

P
M

es
sa

ge
s

F
P

C
o

m
m

an
d

s

S
en

so
r

C
o

m
m

an
d

s

Ja
m

m
er

C

o
m

m
an

d
s

R
ea

d
 C

o
n

n
ec

ti
vi

ty
 D

at
a

fr
o

m
 P

ro
p

P
er

fo
rm

 T
ra

ck

P
ro

ce
ss

in
g

 f
o

r
th

e
C

u
rr

en
t

In
te

rv
al

1.

2. 3. 4.

R
ec

'v
 M

sg
 P

ro
ce

ss
o

r

G
en

er
at

e
 C

o
m

m
an

d
s

an
d

C
o

m
m

u
n

ic
at

io
n

s
M

es
sa

g
es

 f
o

r
o

th
er

P
la

tf
o

rm
s

&
 T

ra
n

sm
it

G
en

er
at

e
M

es
sa

g
es

 f
o

r
o

th
er

 P
ro

ce
ss

es
 &

P

la
ce

 in
 Q

u
eu

e

5.
6.

E
xi

t

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-10 Update: 12/31/97

DRAFT

Block 2. The current ruleset phase of a platform uses information in the platform’s track
file and the updated platform states (for the current platform, its targets and its
subordinates) to control sensor status, determine platform movement and maneuvers, to
control communications networks, etc. Commands to control subordinates and messages
reporting status to commanders and peers are generated and placed in the transmission
queue for the appropriate network links. The receive message processor is scheduled to
distribute the messages to destination platforms if it is not already running.

Block 3. Messages for the other processes are generated to relay engagement decisions to
the other processes and are placed in the FP, Detection and Propagation output buffers for
transmission over their respective sockets.

Block 4. The next ruleset phase for the current platform is scheduled.

Flight Process Logic

Flight Process logic is shown in Figure 2.0-7. The process is time stepped and synchronizes
with the other processes through blocking sockets that communicate in the manner
described for C3IDataTransfer.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-11 EADSIM

DRAFT

Block 1. The scenario random number seed is initialized, the current Monte Carlo run
number is updated and the number of Monte Carlo runs to be made is initialized. The
scenario file is opened and the scenario database is used to initialize the FP data structures.
The FP sockets for interprocess communications are initialized. The data structures for the
Tactical Ballistic Missiles in the scenario are initialized. The list of weapons for each
platform is built, waypoints lists are built and platform flight data structures are built. The
graphics output file is initialized with static header information to allow state vector and
status information to be logged in condensed form for playback.

In
it

ia
liz

e
F

lig
h

t
P

ro
ce

ss
in

g

M
ai

n

IF
 T

B
M

P
re

fl
y

fl
ag

 is
 s

et

P
re

fl
y

sc
ri

p
te

d
T

B
M

s

IF
 D

yn
am

ic
m

is
si

le
 la

u
n

ch
es

S
p

aw
n

 m
is

si
le

la
u

n
ch

 p
ro

ce
ss

L
O

O
P

 w
h

ile
n

o
t

sc
en

ar
io

 e
n

d

U
p

d
at

e
th

e
S

im
u

la
ti

o
n

 T
im

e

M
o

ve
 t

h
e

p
ar

ti
ci

p
an

t
p

la
tf

o
rm

s

re
tr

ie
ve

 t
h

e
p

la
tf

o
rm

 s
ta

te
s

u
n

d
er

g
u

es
t

co
n

tr
o

l

R
et

ri
ev

e
 C

3I
d

at
a

S
en

d
 t

ru
th

 d
at

a
to

 C
3I

S
en

d
 t

ru
th

 d
at

a
to

 D
et

ec
ti

o
n

S
en

d
 t

ru
th

 d
at

a
to

 P
ro

p

L
o

g
 t

ru
th

 d
at

a
 f

o
r

G
ra

p
h

ic
s

E
xi

t

1.

2. 3.

4.

5.

6. 7.

8.

9. 10
.

11
.

12
.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-12 Update: 12/31/97

DRAFT

Block 2. If the option has been selected, scripted TBMs are ‘preflown’ to compute the
launch parameter values that will result in the prescribed trajectories, impact points and
impact times.

Block 3. TBM launches can be optionally performed in a separate process if dynamically
determined launches are required in a scenario. This block terminates FP initialization.

Block 4. The FP process remains in this loop until the end of the scenario.

Block 5. The FP process simulation clock is incremented to the current simulation interval
prior to any processing in the interval.

Block 6. All active platforms and Tactical Ballistic Missiles (TBMs) are moved forward
to the current interval. The specific movement algorithm used to move a platform is
determined by the current mode of movement of the platform.

Block 7. If EADSIM is running in a DIS or ALSP confederation, platform update messages
are read and used to update those platforms owned by other simulations in the
confederation and represented in EADSIM. FP will remain blocked here until the expected
information arrives.

Block 8. Commands and status information from C3I are read and used to determine which
platforms are to be moved in the next simulation interval, what maneuvers are to be
calculated, the mode of movement for each platform, the type of platform, etc. FP will
remain blocked here until the expected information arrives.

Block 9. The true state vector and status information for each platform computed in Block
6 is sent to C3I where it will be used in engagement processing and to generate commands
for the next simulation interval.

Block 10. The true state vector and status information for each platform computed in Block
6 is sent to Detection to generate detections for the current simulation interval.

Block 11. The true state vector and status information for each platform computed in Block
6 is sent to Propagation where it is used in determining network connectivity for the current
simulation interval.

Block 12. The true state vector and status information for each platform computed in
Block 6 is written to the graphics file for playback processing.

Control now moves to the top of the loop, through Blocks 5 and 6 and stops at Block 7 or
8 to wait for messages in the next simulation interval.

Detection Process Logic

Detection Process logic is shown in Figure 2.0-8. The process is time stepped and
synchronizes with the other processes through the same type of blocking sockets described
in section 2.1.1. The Detection process accepts commands from C3I and state vectors from
FP to generate detections for sensors in the scenario each simulation interval. Detection’s
flow of control is similar to that for FP in that it has an initialization step that precedes a
processing loop. Once the processing loop is entered, it continues to be executed until the
end of the scenario.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-13 EADSIM

DRAFT

Block 1. InitDet reads scenario data from the scenario data base, initializes the Detection
interprocess communications sockets, the interface with the ALARM radar clutter and
multipath models, sensor data structures and the Detection random number seed. It
initializes the weapons and jammer data structures for each platform and the sensors for
each platform.

Block 2. This is the top of the scenario processing loop for the detection process. Detection
executes this loop for the duration of the scenario.

Block 3. The Detection simulation clock is advanced to the current simulation interval.

In
cr

em
en

t
S

im
u

la
ti

o
n

T
im

e

M
ai

n

In
it

D
et

In
it

ia
liz

e
D

et
ec

ti
o

n
D

at
a

S
tr

u
ct

u
re

s

L
O

O
P

 w
h

ile
S

ce
n

ar
io

 n
o

t
 e

n
d

ed

G
et

T
ru

th
R

et
ri

ev
e

d
at

a
fr

o
m

F
lig

h
t

P
ro

ce
ss

in
g

S
et

B
o

d
yM

at
ri

x

T
ra

n
sf

o
rm

 t
ru

th
 t

o
b

o
d

y
co

o
rd

in
at

es

S
en

so
rS

ta
tu

s
G

et
 s

en
so

r
cm

d
s

fr
o

m
 C

3I

IF
 J

am
m

in
g

p
la

tf
o

rm
s

ex
is

t
Ja

m
In

it
U

p
d

at
e

ja
m

m
er

st
at

es

D
et

ec
t

G
en

er
at

e
d

et
ec

ti
o

n
s

P
u

tS
p

d
s

S
en

d
 d

et
ec

ti
o

n
s

to
C

3I

W
ri

te
S

p
d

s
L

o
g

 d
et

ec
ti

o
n

s
fo

r
p

o
st

 p
ro

ce
ss

ig
n

P
u

rg
eS

p
d

sQ
u

e
C

le
ar

 o
u

tp
u

t
q

u
eu

e
fo

r
th

e
n

ex
t

in
te

rv
al

1.

2.

3. 4. 5. 6.

7.

8. 9. 10
.

11
.

E
xi

t

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-14 Update: 12/31/97

DRAFT

Block 4. Updated true state vectors and status information for each platform are read from
the FP/Detection socket for the simulation interval. The process will wait here until all the
expected data has arrived at the socket.

Block 5. SetBodyMatrix computes the transformation matrix to convert vectors from Earth
Centered Inertial (ECI) coordinates to platform or missile body coordinates. The matrix is
stored for later computations.

Block 6. Sensor commands from C3I for the current interval are read from the socket and
the geometry, status and mode of each sensor on each platform in the scenario are updated.
Sensor target lists are updated. The process will wait here until all the expected data has
arrived at the socket.

Block 7. If the scenario contains jammers, the pointing angles are updated and converted
from ECI to platform body coordinates according to commands received from C3I.
Jammer status is also updated.

Block 8. Detect checks all the sensors on each platform in the scenario to determine those
that can scan for targets. For each such sensor it determines which targets are detected and
places the detection reports in a Sensor Periodic Detection Summary (SPDS) data structure.
All the detections for the current simulation interval are calculated in this call to Detect.

Block 9. The SPDS data generated in Block 8. is sent over the Detection to C3I socket to
C3I.

Block 10. Detection information is logged for post-processing.

Block 11. The SPDS queue is emptied.

Propagation Process Logic

Propagation is the third of the EADSIM time-stepped processes. It uses true platform state
vectors and status information from FP and commands from C3I to determine the
connectivity status of network links for each simulation interval. Figure 2.0-9 is a logical
flow diagram of the main program for the Propagation process. It consists of initialization
steps followed by a processing loop that lasts for the duration of the scenario.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-15 EADSIM

DRAFT

Block 1. PropInit initializes the scenario data structures for the Propagation process and
initializes the interprocess communications sockets with the other processes. It initializes
the antenna locations and determines the antenna height for each network node.

Block 2. The initial connectivity data for all network links in the scenario is sent to C3I.

M
ai

n

P
ro

p
In

it
R

ea
d

 s
ce

n
ar

io
 d

at
a

In
it

ia
liz

e
d

at
a

st
ru

ct
s

P
u

tC
o

n
n

ec
ti

vi
ty

W
ri

te
 in

it
ia

l
co

n
n

ec
ti

vi
ty

 d
at

a
to

 C
3I

U
p

d
at

e
si

m
u

la
ti

o
n

T
im

e

P
ro

p
G

et
T

ru
th

R
et

ri
ev

e
tr

u
e

st
at

es
fr

o
m

 F
P

 s
o

ck
et

Ja
m

m
er

S
ta

tu
s

R
et

re
iv

e
ja

m
m

er
st

at
u

s
in

fo
 f

ro
m

C
3I

L
O

O
P

 o
ve

r
n

et
w

o
rk

s

L
O

O
P

 w
h

ile
sc

en
ar

io
 n

o
t

o
ve

r

N
et

w
o

rk
 C

o
n

n
ec

ti
vi

ty

D
et

er
m

in
e

th
e

co
n

n
ec

ti
vi

ty
 f

o
r

ea
ch

n
et

w
o

rk

IF
 a

ll
p

at
h

s
ar

e
u

p
d

at
ed

E
xi

t
lo

o
p

P
u

tC
o

n
n

ec
ti

vi
ty

S
en

d
 c

o
n

n
ec

ti
vi

ty
d

at
a

to
 C

3I

C
lo

se
 s

o
ck

et
 a

n
d

fi
le

 c
o

n
n

ec
ti

o
n

s

E
xi

t

1. 2.

3.
4. 5. 6.

7.

8.

9.
10

.

11
.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-16 Update: 12/31/97

DRAFT

Block 3. The processing loop for Propagation executes for the duration of the scenario.

Block 4. The Propagation simulation clock is updated to the current simulation interval.

Block 5. The updated true state vectors from FP are read from the FP to Propagation socket.
This information is used to update the position of each communications node that has
moved in the last interval. The antenna altitudes are updated for communications nodes and
jammers as are the heading and pitch angles for airborne antennas.

Block 6. Jammer commands from C3I are used to change the status of jammers and update
jammer power. The on/off times for jammers is updated

Block 7. Loop over all the networks in the scenario.

Block 8. NetworkConnectivity performs connectivity analysis for each communications
path of the given network. Paths are either connected or not.

Block 9. If the last path in the network to be updated just been processed, then control exits
the processing loop. To enhance the execution speed, the links updated in a single interval
can be specified as a percentage of the total.

Block 10. The connectivity information for the scenario networks in the current simulation
interval is sent to C3I

Block 11. At the end of the current run the process gracefully shuts down.

Data Flow through the Major Components

EADSIM is comprised of three components: a preprocessing step, the runtime software,
and a postprocessing step. The largest part of the preprocessing step is Scenario
Generation, a graphical user interface through which the user defines the components and
the layout of the scenario, as well as the initial sequence of events that start the scenario.
The collected information is stored in a set of scenario files as shown in Figure 2.0-10
which are read by the runtime software and used to generate the scenario results. The
results are recorded in the course of runtime software execution and stored in a set of data
collection files which are read by the post processors to create analysis reports to the user
and by the playback processor to generate an animated display of the scenario unfolding.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-17 EADSIM

DRAFT

FIGURE 2.0-10. EADSIM Data Flow.

The scenario files contain information that characterizes the components that make up the
scenario: the laydown files, platforms that comprise the laydowns, the systems that define
the platforms and the elements that comprise the systems. Figure 2.0-11 illustrates the
makeup of the scenario data. The data in a scenario is organized in a hierarchical fashion,
with each level of the hierarchy building on the lower levels. The elements form the lowest
level of the hierarchy:

Airframes Protocols
Sensors Radar Cross Section (RCS)
Rulesets InFrared Signature (IR)
Communication Devices Probability of Kill Tables (PK)
Jammers Formation
Weapons Flyout Table (FOT)

Combinations of elements are used to build Systems. Systems are deployed as Platforms.
Groupings of Platforms are organized into Laydowns. The Platforms in the Laydowns are
interconnected with Networks. The Networks also use the Protocol elements. Areas of
Interest (AOIs) can be created and associated with both Platforms and Networks. The Map
specification forms the geographic basis for the scenario. The Scenario combines all of the
lower level data.

FLIGHT
PROC.

DETECT PROP

C3I

TECHNICAL PROCESSES

C3I/DECISION
PROCESS

SIMULATION SETUP

SCENARIO
GENERATION

SCENARIO
EXECUTION

REPORT
GENERATION

MAP DATA
MANAGEMENT

POST-SIMULATION ANALYSIS

WINDOW-BASED
POST-PROCESSING

SCENARIO
PLAYBACK

OFF-LINE
ANALYSIS TOOLS

RUN-TIME MODELS

Scenario
Files

Runtime
Results

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-18 Update: 12/31/97

DRAFT

Each of these groupings of data is combined into files and directories. The element data is
contained in a single directory, referenced as an element data path in the scenario. Each
laydown is in a separate laydown file. Each grouping of networks is in a network file, and
AOIs are in AOI files. The map specification is in a map file and is itself a specification of
lower level data. LLTRs, Preferences, Display Colors and Routes, Transmittance and
Radiance are likewise contained in separate files. Finally each scenario is contained in a
scenario file.

FIGURE 2.0-11. Scenario Database.

At each level of hierarchy (Figure 2.0-11) a file contains either direct references to pieces
of the lower level files or path names to the lower level files. This feature of the input files
facilitates a great deal of flexibility in scenario design and analyses. Major pieces of the
data base can be ‘mixed and matched’ to form variants on scenarios without rebuilding the
entire scenario. Also, each level can be used in multiple scenarios. Thus, once a reliable
element database has been constructed, it can be reused in multiple scenarios. Different
combinations of laydowns, networks, and maps can also be made. The contents of specific
portions of the scenario file are read at the initialization of each of the four processes to
assign initial values to the internal data structures of each process.

SCENARIO GENERATION DATA HIERARCHY

A HIERARCHY OF DATA ORGANIZES AND EXPEDITES THE
SPECIFICATION OF A SCENARIO

• INDIVIDUAL
 COMPONENTS ARE
 SPECIFIED AS
 ELEMENTS

• ELEMENTS
 COMBINE TO
 MAKE SYSTEM
 ELEMENTS

• SYSTEMS ARE DEPLOYED

• SCENARIOS ARE THEN
 A FURTHER COMBINATION
 OF LOWER LEVEL DATA

ELEMENT DATA

LAYDOWNS

PLATFORM
PLATFORM

PLATFORMPLATFORM

NETWORKS

SCENARIOS

SYSTEMS

ROUTES

AREAS OF
INTEREST

MAP

ENVIRON-
MENT

PP TABLES

FLYOUT
TABLES

PK
TABLES

FOR-
MATIONS

PROTO-
COLS

WEAPONS

RULE
SETS

COMM
DEVICES

JAMMERS

SENSORS

INFRARED
SIGNATURE

RADAR
SIGNATURE

ICONS

AIRFRAME

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-19 EADSIM

DRAFT

The internal data flow between processes is shown in Figure 2.0-12.

FIGURE 2.0-12. Runtime Process Data Flow.

Data is transferred between the processes in the form of messages transmitted over sockets.
Sockets are special file descriptors that allow two processes residing on the same or
different computers to communicate. Flight Processing sends the updated state vector for
the active platforms in a scenario to Detection, Propagation and C3I. The Detection process
passes detections to C3I every simulation interval in the form of a SPD Summary.
Similarly, Propagation sends periodic connectivity reports to C3I. C3I sends commands
and status information to Flight Processing. It sends commands to Detection that govern
how sensors are used and to Propagation to control communications devices.

The output files contain logging information collected at runtime that is used by a post-
processor to generate analysis reports and to drive the playback processor. The playback
processor provides an animated display of the scenario as it was executed at runtime.

Source Code Hierarchy

Figures 2.0-13 through 2.0-16 are source code hierarchy charts for the four EADSIM
runtime processes, C3I, Flight Processing, Detection and Propagation, respectively.

C3I Process

The calling tree for C3I is shown at the top of Figure 2.0-13 and consists of the call to the
initialization function, C3IIinit and a call, via function pointer, to the next function
scheduled for execution on the simulation event calendar. The lists headed by ‘*’ in the
remainder of the figure contain functions that can be scheduled. This is not an exhaustive
list; rather, it emphasizes the areas of interest for purposes of planned SMART analyses.
The functions listed in the calling tree are implementations of the phases for the four
rulesets, Flex SAM, Flex Commander, AG Attacker and Ground Attack Commander. A
brief description of each function follows.

T E C H N I C A L P R O C E S S E S C 3 I / D E C I S I O N P R O C E S S E S

D E T E C T I O N
P R O C E S S

P R O P A G A T I O N
P R O C E S S

C 3 I P R O C E S S
F L I G H T
P R O C E S S I N G
> A I R C R A F T
> S S M
> G R O U N D
> SATELL ITE

PERIODIC DETECTIONS

COMMANDS AND STATUS

PERIODIC CONNECTIVITY

GROUND TRUTH

GROUND TRUTH

GROUND TRUTH

COMMANDS

COMMANDS

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-20 Update: 12/31/97

DRAFT

Simulation Executive: The executive calls the C3I initialization function, performs
calendar scheduling and places scheduled functions in execution.

C3IInit: Reads the scenario database and initializes the C3I runtime data structures. It
generates the first detection commands for the sensors and schedules the initial events on
the simulation calendar.

C
M

P
h

as
e1

7
A

G
P

h
as

e7

S
im

u
la

ti
o

n

E
xe

cu
ti

ve

C
3I

In
it

C
3I

D
at

aT
ra

n
sf

er

A
G

P
h

as
e1

A
g

P
h

as
e4

A
G

P
h

as
e5

A
G

P
h

as
e6

A
G

P
h

as
e8

A
G

P
h

as
e9

In
it

C
2

A
G

P
h

as
e1

2

R
ea

d
T

B
G

u
es

tM
es

sa
g

es

W
ri

te
F

P
G

u
es

tR
ep

o
rt

W
ri

te
F

P
R

ep
o

rt
s

R
ea

d
T

ru
th

W
ri

te
G

u
es

tR
ep

o
rt

s

W
ri

te
S

en
so

rR
ep

o
rt

R
ea

d
S

P
D

S

W
ri

te
P

ro
p

R
ep

o
rt

s

G
et

C
o

m
m

u
n

ic
at

io
n

s

S
ch

N
ex

t

A
tt

ac
kC

m
d

P
h

as
e1

A
tt

ac
kC

m
d

P
h

as
e1

3

JC
P

h
as

e1
6

F
S

A
M

P
h

as
e1

S
A

P
h

as
e5

A
ir

E
n

g
ae

P
h

as
e6

JC
P

h
as

e1
6

F
xC

m
P

h
as

e1

A
ir

E
n

g
ag

eP
h

as
e6

A
R

P
h

as
e7

A
R

P
h

as
e8

A
R

P
h

as
e9

F
xC

m
P

h
as

e1
2

JC
P

h
as

e1
6

S
ch

ed
u

le
d

F

u
n

ct
io

n
s

*
*

*
*

*

-
F

un
ct

io
ns

 in
vo

ke
d

fr
om

 th
e

S
ch

ed
ul

er

*

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-21 EADSIM

DRAFT

InitC2: Assigns runtime functions to the rulesets.

C3IDataTransfer: Runs at the beginning in each simulation interval and retrieves
messages from the other processes that are required by C3I to perform its processing for the
interval. Sends messages to control the other processes. Reschedules itself after
completing data transfers for the current interval.

ReadTBGuestMessages: Reads DIS messages from TAC Brawler.

WriteFPGuestMessages: Sends Brawler messages to Flight Processing.

WriteFPReports: Sends engagement commands to Flight processing, e.g. determines
maneuvers to be executed by a platform.

ReadTruth: Reads state vectors and status information for each platform sent from the FP
process. The information has been updated by FP to be valid in the current simulation
interval.

WriteGuestReports: Sends C2 information and state data to TAC Brawler.

WriteSensorReport: Sends sensor control and status messages for the current interval to
the Detection process.

ReadSPDS: Reads detection reports from the Detection process for the current interval.
C3I uses the information to update track files for each platform.

WritePropReports: Sends commands to update jammer information and dynamically
establish new networks.

GetCommunications: Reads messages from the Propagation process and uses the
information to determine whether network communications can occur.

SchNext: Schedules a call to C3IDataTransfer at the start of the next interval.

The AGAttacker ruleset phases are:

AGPhase1: Target select phase for the air-to-ground attacker ruleset. Executes for
wingman for scripted targets and commanded targets from the flight leader. Executes for
flight leaders for scripted, detected and commanded targets.

AGPhase4: Lock phase for the air-to-ground attacker ruleset. Executes until the
platform's weapons are within launch range.

AGPhase5: AGAttacker launch phase. Executes once and schedules the intercept at
weapon impact.

AGPhase6: Intercept phase for the air-to-ground attacker performs kill assessment on the
target at intercept time.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-22 Update: 12/31/97

DRAFT

AGPhase7: React to air-to-air engagement for the air-to-ground attacker. Executes when
an AG Attacker is under attack and the attacker (fighter) is in engage mode. Determines the
AG Attacker’s reaction.

AGPhase8: AG Attacker reacts to lock by air attacker when the attacker has locked a
weapon on the air-to-ground attacker.

AGPhase9: Air-to-ground attacker drag phase. Scheduled when a decision is reached that
the AGAttacker should execute a drag maneuver.

AGPhase12: AGAttacker reacts to SAM lock. The SAM platform schedules AGPhase12
when it locks on the AGAttacker platform, providing that the SAM has a Radar sensor.

JCPhase16: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodically.

The Ground Attack Commander ruleset phases are:

AttackCmdPhase1: Performs the target select phase for the Ground Attacker
Commander.

AttackCmdPhase13: Performs the vector update for a Ground Attacker Commander, i.e.,
a commanded AG Attacker is informed that a commanded intercept point has been
changed.

JCPhase16: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodically.

The Flexible SAM ruleset phases are:

FSAMPhase1: Performs target selection and weapons assignment for flexible SAM
platforms.

SAPhase5: Executes at the time of launch for a ground based weapon system. If the
launch has not been canceled, it will begin the engagement and schedule a call to the
intercept routine at intercept time. Otherwise it will return without doing anything.

JCPhase16: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodically.

CMPhase17: Countermeasures phase, currently used for Flexible SAMs and Flexible
Commanders to call a trigger evaluation function that determines if circumstances indicate
a reaction. Calls a response routine to execute the reaction.

The Flexible Commander ruleset phases are:

FxCmPhase1: Target select phase for a Flexible Commander. This phase contains the
logic that assigns both air and ground based assets to targets. These assets include fighters,
SAM systems and DEW systems. The Flex Commander can be assigned to an airborne or
a ground based platform.

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-23 EADSIM

DRAFT

AirEngagePhase6: Executes at the intercept time for a ground or air based weapon
system. If the intercept has not been canceled, it will determine if the intercept was
successful and perform the status operations. Otherwise it will return without doing
anything.

ARPhase7: Executes when a subordinate tanker is under attack and the attacking system
is in engage mode. Schedules SCRAM drag maneuver for himself. Since the Flex
Commander reactions to attack are similar to those of the Air Refueling (AR) Tanker, the
ruleset uses the AR phases 7, 8 and 9 for this purpose.

ARPhase8: Executes when an air borne commander is under attack and the attacking
system has locked a weapon. Schedules the SCRAM drag maneuver for himself.

ARPhase9: Reaction routine is scheduled when a platform should execute a drag
maneuver. Assumed to be called once the maneuver has begun to determine when it will
complete.

FxCMPhase12: Executes when a SAM platform locks on an airborne flexible commander
The SAM platform initially schedules FxCmPhase12 (providing that the SAM has a Radar
sensor)

JCPhase16: Allocates jammers on a target platform (e.g. AG Attacker) to jam a SAM
platform radar. This function executes periodically.

Flight Processing Process:

The calling tree for the FP process is shown in Figure 2.0-14. The functions performed in
the FP process can be grouped into Initialization, TBM Launch, Platform Update, Missile
Update and Interprocess Communications. The two update functions differ in that platform
updates affect different parameters than do missiles. A brief description of each function
follows.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-24 Update: 12/31/97

DRAFT

In
it

F
P

S
av

eL
au

n
ch

S
ta

rt
M

L
au

n
ch

U
p

d
at

eO
p

F
ac

s
G

et
G

u
es

t
P

la
tf

o
rm

S
ta

te
s

G
et

C
3I

P
u

tP
ro

p
T

ru
th

P
u

tT
ru

th

W
ri

te
T

ru
th

M
ai

n

P
u

tC
3I

U
p

d
at

eM
is

si
le

F
ly

S
at

el
lit

e

O
ri

en
tS

at

F
ly

S
im

p
le

S
A

M

O
ri

en
tA

ir

F
lig

h
t

F
ly

C
ru

is
e

T
B

M
L

au
n

ch

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-25 EADSIM

DRAFT

InitFP: Reads the scenario data for flight processing and initializes the FP data structures.
It also establishes interprocess communications with the other processes.

SaveLaunch: Preflies the scripted TBMs in the scenario and saves the launch parameters
for use during TBM flyout.

StartMLaunch: Spawns a separate process that is responsible for finding launch solutions
for missiles that are launched dynamicallyi.e. in response to an event or command during
scenario execution.

UpdateOpFacs: Updates the position and status of a platform for the current time step.
Moves airborne, surface, and missile Platforms.

FlySatellite: Propagates the position and velocity of an object along a ballistic drag free
elliptical, hyperbolic or parabolic trajectory using an F&G series integrator.

OrientSat: Orients the body of a satellite with respect to its velocity vector.

FlySimpleSAM: Performs 3 D.O.F. and Constant Velocity SAM flyouts. Models the
guided flight of a homing missile from launch to time of target closest approach.

OrientAir: Orients the body frame of an airborne platform with respect to its velocity
vector.

Flight: Calls the function that performs calculations for a specified flight mode, e.g.,
waypoint mode, scramble, return to base, wingman, etc.

UpdateMissile: When the scheduled launch time for a missile occurs, UpdateMissile
performs the launch calculations and continues to periodically update its state until impact
occurs or the missile is killed.

FlyCruise: Updates the state of a cruise missile between waypoints and maintains the
missile’s position within an altitude corridor or at a constant altitude above the ground.

TBMLaunch: Iterates on pitch angle or pitch rate to converge on a trajectory that will
achieve the desired ground range and then initializes a TBM for launch.

GetGuestPlatformStates: Used by Flight Processing to retrieve the states of platforms
owned by external simulations from the socket connection between FP and C3I.

GetC3I: This function receives engagement commands from the C3 mode that is part of
this simulation run. It unpacks data from a buffer and then sets the flight processing mode
and system state as indicated by the buffer contents.

PutC3I: Sends updated truth states and status information to the C3I process. Called every
simulation interval.

PutPropTruth: Transmits the truth data from Flight Processing to Propagation.

PutTruth: Transmits the truth data from flight processing to sensor detection.

WriteTruth: Used by flight processing to send the truth data to a graphics display file.
Data is logged only when a system is active or has been recently killed.

Detection Process

The Detection process calling tree is shown in Figure 2.0-15. Functional groupings are:
Initialization, Interprocess Communications and functions which perform the detection
computations. A brief description of each of the functions shown in the calling tree follows.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-26 Update: 12/31/97

DRAFT

M
ai

n

In
it

D
et

G
et

T
ru

th

S
en

so
rS

ta
tu

s

Ja
m

In
it

D
et

ec
t

P
u

tS
P

D
S

W
ri

te
S

P
D

S

P
u

rg
eS

P
D

S
Q

u
e

P
ro

ce
ss

S
ta

ts

S
en

so
rT

g
t

R
ad

ar
T

g
t

H
u

m
in

tT
g

t

Im
in

tT
g

t

S
ig

in
tT

g
t

IL
D

S
T

g
t

R
W

R
T

g
t

R
F

S
en

so
rT

g
t

IR
T

g
t

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-27 EADSIM

DRAFT

InitDet: Uses data retrieved from the scenario file to initialize the detection data structures
and ancillary functions, e.g. selected ALARM subroutines used to support clutter and
multipath calculations.

GetTruth: Used by sensor detection to retrieve truth states and status information sent
from Flight Processing.

SensorStatus: Uses sensor commands from C3I to update sensors in preparation for
generating the detections for the current interval.

JamInit: Sets up jammer pointing angles and transforms coordinates from ENU to the
jammer reference frame.

PutSPDS: Sends sensor detections for the current simulation interval to the C3I process.

WriteSPDS: Logs detections for the current interval to the Detection data collection file.

PurgeSPDSQue: Clears the Sensor Periodic Detection Summary output buffer (queue) at
the end of each simulation interval.

ProcessStats: Computes and logs Detection process statistics each 60 seconds of
simulation time. These include CPU and memory usage.

Detect: Updates the status of each sensor in response to commands from C3I. Turns
sensors on or off in the presence of jammers and ARMs, adjusts sensor point angles in
preparation for computing detections

SensorTgt: Determines the type of sensor to model and calls the appropriate detection
function. Serves as the gateway to the detection algorithms.

RadarTgt: Generates radar detections. Detection calculations are determined by user
inputs and can include deterministic/probabilistic detections, clutter, multipath and
diffraction, simple sensor, compound sensor, radar resource management, etc.

HumintTgt: Loops through all pertinent sublists to determine which target systems the
human intelligence sensor can detect.

ImintTgt: loops through all pertinent systems to determine which target systems the
specified image intelligence sensor can view

SigintTgt: Models a signal intelligence sensor. This type of sensor detects targets based
on the type and frequency of active radio emitters on the target system.

ILDSTgt: This module loops through all launched missiles to determine if the specified
infrared launch detector sensor can view which of the missiles.

RWRTgt: Loops through a list of systems to determine which of its scripted target systems
the specified radar warning receiver can view.

RFSensorTgt: loops through all pertinent systems, checking the on/off times, to
determine which of the target systems the input passive RF sensor can view.

IRTgt: loops through all pertinent sublists to determine which target systems the input
infrared sensor can view.

Propagation Process

The Propagation process calling tree, shown in Figure 2.0-16, consists of an initialization
function, functions for interprocess communications, jammer status updates and
connectivity computations. A brief description of each of the functions shown in the
calling tree follows.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-28 Update: 12/31/97

DRAFT

PropInit: Reads the scenario file and initializes the propagation data structures.

PutConnectivity: Used by propagation to transmit the connectivity matrix to C3I. The
matrix shows which of the defined network links in the scenario have connectivity in the
current scenario interval. Matrix values are 0, for no connectivity, or 1, if connected.

M
ai

n

P
ro

p
In

it
P

u
tC

o
n

n
ec

ti
vi

ty
Ja

m
m

er
S

ta
tu

s
N

et
w

o
rk

C
o

n
n

ec
ti

vi
ty

P
ro

p
G

et
T

ru
th

P
ro

p
S

ta
ts

D
yn

am
ic

N
et

w
o

rk

R
F

L
o

ss

F
re

eS
p

ac
eL

o
ss

T
ir

em

DRAFT
ASP-II for EADSIM Conceptual Model Specification

Update: 12/31/97 2.0-29 EADSIM

DRAFT

PropGetTruth: Retrieves platform truth states and status information sent from Flight
Processing.

PropStatus: Used by propagation to write the connectivity stats to the stats file.

JammerStatus: Changes jammer status in response to commands from the C3I process.
Changes include turning the jammer on and off, dynamically allocating jammers, etc.

DynamicNetwork: Allocates memory for the explicit network of a dynamically allocated
platform.

NetworkConnectivity: Performs connectivity analysis for each communications path of
the specified network.

RFLoss: Determines whether the link between two network nodes has unobstructed line
of sight. If so, it uses free space loss calculations to determine connectivity. Otherwise it
uses the TIREM model to make the determination.

FreeSpaceLoss: Computes the free space loss in db.

TIREM: Determines connectivity in the presence of obstructions in the line of sight
between two nodes.

DRAFT
Conceptual Model Specification ASP-II for EADSIM

EADSIM 2.0-30 Update: 12/31/97

DRAFT

